首页 > 学术报告 > 正文
Optimal resilience of modular interacting networks
报告人:董高高副教授,江苏大学 时间:2022年1月14日19:00 字号:

腾讯会议:602-663-5703


报告摘要:

Coupling between networks is widely prevalent in real systems and has dramatic effects on their resilience and functional properties. However, current theoretical models tend to assume homogeneous coupling where all the various subcomponents interact with one another, whereas real-world systems tend to have various different coupling patterns. We develop two frameworks to explore the resilience of such modular networks, including specific deterministic coupling patterns and coupling patterns where specific subnetworks are connected randomly. We find both analytically and numerically that the location of the percolation phase transition varies nonmonotonically with the fraction of interconnected nodes when the total number of interconnecting links remains fixed. Furthermore, there exists an optimal fraction  of interconnected nodes where the system becomes optimally resilient and is able to withstand more damage. Our results suggest that, although the exact location of the optimal  varies based on the coupling patterns, for all coupling patterns, there exists such an optimal point. Our findings provide a deeper understanding of network resilience and show how networks can be optimized based on their specific coupling patterns.

个人简介:

董高高,江苏大学与美国波士顿大学联合培养博士, 副教授、博导,中国数学与应用数学复杂网络与复杂系统专委会委员、中国统计物理复杂系统学术委员会委员、江苏省高校“青蓝工程”优秀青年骨干教师,曾获得江苏省科技进步一等奖(排名第2)、江苏省教育成果三等奖(排名第3)、江苏省工业与应用数学青年奖。研究兴趣为:复杂网络建模、复杂网络理论及应用、网络动态抗毁性和静态鲁棒性。在《PNAS》(20212018,National Science Review》等国际期刊以第一作者或通讯作者被 SCI 收录论文50余篇。部分研究工作被《PNAS》(20212018)、《Nature Science Review》收录,合著3本专著。先后主持国家自然科学基金项目2项,省部级项目2项,参与国家自然科学基金重点项目1项。2022年即将作为访问学者赴英国牛津大学(Oxford University)数学研究所访问一年。目前正担任Mathematics英文刊编委(JCR一区)和国际期刊《Frontier of Physics》中网络方向特刊的客座主编。


【打印此页】 【关闭窗口】