首页 > 学术报告 > 正文
Dynamical intricacy and average sample complexity of amenable group actions
报告人:李杰副教授, 江苏师范大学 时间:2021年4月8日15:30 字号:

报告地点:行健楼 529

邀请人:周效尧副教授

报告摘要:In 2018, Petersen and Wilson introduced the notion of dynamical intricacy and average sample complexity for dynamical systems of Z-action, based on past works on the notion of intricacy in the research of brain network and probability theory. In this paper, we consider this notion in the case of amenable group actions. We show that many basic properties in the Z-action case remain true. Also we show that their suprema over covers or partitions are equal to the amenable topological entropy and measure entropy, using the quasitiling technique in the theory of amenable group.

报告人简介:

江苏师范大学数学与统计学院副教授,师从中国科学技术大学叶向东教授,研究方向为拓扑动力系统与遍历论。近年来在国际著名数学期刊,J. Dynam. Differential Equations,  Ergodic Theory Dynam. Systems,Nonlinearity, Discrete Contin. Dyn. Syst 等杂志上发表论文多篇。


【打印此页】 【关闭窗口】