首页 > 学术报告 > 正文
2021南京师范大学图论组合系列报告:Symmetric abelian group-invariant Steiner quadruple systems
报告人:季利均教授,苏州大学 时间:2021年1月25日15:30 字号:

会议 ID520 581 395

会议密码:012521

邀请人:许宝刚教授

摘要:Let G be an abelian group of order v.  A Steiner quadruple system of order v (SQS(v)) (G, B) is called symmetric K-invariant if for each BB, it holds that B+gB for each gG and B=-B+g’ for some g’G. When the Sylow 2-subgroup of G is cyclic, Munemasa and Sawa gave a necessary and sufficient condition for the existence of a symmetric G-invariant SQS(v) (2012), which is a generalization of a necessary and sufficient condition for the existence of a symmetric cyclic SQS(v) by Piotrowski (1985). In this talk, we give that a symmetric G-invariant SQS(v) exists if and only if v≡ 2,4 mod 6, the order of each element of G is not divisible by 8 and there exists a symmetric cyclic SQS(2p) for any odd prime divisor p of v.

 

【打印此页】 【关闭窗口】