首页 > 学术报告 > 正文
On the metric mean dimension of amenable groups
报告人:杨芮博士,重庆大学 时间:2025年4月09日14:00/4月10日9:00 字号:

报告地点:行健楼学术活动室665

邀请人:陈二才教授

摘要:Metric mean dimension is a vital topological quantity to capture the complexity of infinite entropy systems. In this talk, some recent progress on the theory of metric mean dimension of amenable groups is presented. I first give a positive answer to Gutman-Spiewak's open question, and then show that  Lindenstrauss-Tsukamoto’s double variational principle suffices to take the ergodic measures. Finally, I shall discuss some results involving the amenable metric mean dimension of factor maps.

报告人简介: 杨芮毕业于南京师范大学,获博士学位,现为重庆大学科研博士后。其研究方向为拓扑动力系统与遍历论,目前主持一项博士后面上项目,研究成果发表于 Nonlinearity、Studia Math.、IEEE Trans. Inform. Theory 等国际期刊。


【打印此页】 【关闭窗口】