报告地点:行健楼学术活动室526
邀请人:陈二才教授
摘要:Let f be a C^r Anosov diffeomorphism on T^2 and {f_1,...,f_k} be a family of C^r-random perturbations of f with r>2. We show that if the positive Lyapunov exponent of any stationary SRB measure of {f_1,...,f_k} is equal to the positive Lyapunov exponent of linearization A in GL(2,Z) of f, then the stable foliation of {f_1,...,f_k} are non-random and C^r-smooth. If we further assume the negative Lyapunov exponent of the stationary SRB measure also equals A, then there exists a smooth conjugacy h on T^2, such that h\circ f_i\circ h^{-1}=A+v_i for every i=1,...,k. The same result holds for random perturbations of generic hyperbolic automorphism A in GL(d,Z). This is a joint work with A. Brown.。
报告人简介:史逸,四川大学特聘研究员,主要研究方向为微分动力系统。2014年博士毕业于北京大学和法国勃艮第大学,导师为文兰院士和Ch. Bonatti教授。史逸主要研究微分动力系统中的部分双曲系统和星号向量场的动力学性质,已在Adv. Math.,Comment. Math. Helv.,Trans. AMS,CMP等期刊发表多篇论文.2017年入选中国科协青年人才托举工程,2023年入选国家高层次人才特殊支持计划青年拔尖人才项目,2017年主持国家重点研发计划青年科学家项目。