2017年11月19日 |  English version
网站首页 | 学院一览 | 学院新闻 | 科学研究 | 学科建设 | 师资队伍 | 人才培养 | 学生工作 | 下载专区 | 招考信息
 
On the dynamics of quasi-periodically perturbed homoclinic solutions

报告题目:On the dynamics of quasi-periodically perturbed homoclinic solutions

报告人:吕克宁教授 (美国杨百翰大学和四川大学,国家杰出青年基金获得者和千人计划专家)

报告时间:2017519日(周五)10:30

报告地点:行健楼学术活动室526

邀请人:高洪俊 教授

Abstract:

We study the complicated dynamics of quasi-periodically perturbed ordinary differential equations with a homoclinic orbit to a dissipative saddle point. We show that there are four regions of parameters in which the equations have respectively: (1) attracting quasi-periodic integral manifolds of Levinson type; (2) transition to chaos; (3) strange attractors; (4) homoclinic tangles. In the case of homoclinic tangles, we not only obtain the results on horseshoes similar to the existing ones, but also give a comprehensive geometric description of the structures of tangles.

 返回
南京师范大学数学科学学院 版权所有 Copyright © 2009
通讯地址:南京市亚东新城区文苑路1号 南京师范大学数学科学学院 邮政编码:210023
联系电话:025-85898785