Relaxed Euler systems and convergence to Navier-Stokes equations
报告人:Prof. Yue-Jun PENG,Université Clermont Auvergne / CNRS , France. 时间:2019年8月12日15:00
摘要:Consider the approximation of Navier-Stokes equations for a Newtonian fluid by Euler type systems with relaxation. This requires to decompose the second-order derivative terms of the velocity into first-order terms. We use Hurwitz-Radon matrices for this decomposition. We prove the convergence of the approximate systems to the Navier-Stokes equations locally in time for smooth initial data and globally in time for initial data near constant equilibrium states.
Laboratoire de Mathématiques Blaise Pascal, UMR 6620
Université Clermont Auvergne / CNRS , France.
报告人简介: Yue-Jun PENG 教授1986年在复旦大学数学系获得硕士学位,导师为李大潜院士。1992年在法国里昂高等师范学校获得博士学位,导师为法国著名偏微分方程专家Denis Serre。Yue-Jun PENG教授的研究工作涉及守恒律方程组的弱熵解、拟线性双曲方程组的光滑解、离子体和半导体科学中流体动力学模型的渐近极限以及偏微分方程初始层和边界层的分析。在Annales IHP Analyse Non Linéaire, J. Math. Pures Appl., SIAM J. Math. Anal., J. Diff. Equations, Comm. Part. Diff. Equations 等国际高水平期刊上发表70余篇SCI论文。著有《Some Problems on Nonlinear Hyperbolic Equations and Applications》,由World Scientific Publishing Company 出版。